Multidimensional aneurysmal growth

A novel technique derived from biomedical engineering principles to help refine assessment of aortic growth

Giampaolo Martufi, Alina Ismaguilova, Jehangir J Appoo, Eric J. Herget, Alexander J. Gregory, Naeem Merchant, and Elena S. Di Martino

University of Calgary, Calgary, Canada

The 2015 Canadian Cardiovascular Congress
Acknowledgements

Postdoctoral Fellowship, Canada

Create, Canada

Canadian Foundation for Innovation
Outline

1. Background
2. Motivations
3. Growth measure
4. Results
5. Conclusions
Outline

1. Background
2. Motivations
3. Growth measure
4. Results
5. Conclusions
Background

Thoracic Aortic Aneurysms

Carries about 90% overall mortality rate

Surgery carries morbidity/mortality risks

Current clinical practice:
- Maximum transverse TAA diameter
- TAA expansion rate

Strong challenge
Outline

1. Background
2. Motivations
3. Growth measure
4. Results
5. Conclusions
Motivations

TAA diameter challenge

mean = 5.31 cm

59%

Pape et al. Circulation 2007

The 2015 Canadian Cardiovascular Congress
Motivations
Can we challenge TAA expansion rate?

How does a TAA grow?
Where does TAA grow fast?

Local wall weakening

April 31, 2007

April 12, 2007
July 3, 2008

The 2015 Canadian Cardiovascular Congress
Outline

1. Background
2. Motivations
3. Growth measure
4. Results
5. Conclusions
Growth measure

Descending aorta geometry acquisition

Image segmentation 3D model Surrogate model
Growth measure
Multidimensional growth estimation

Non linear growth measure

\[g_d^i = \frac{1}{t} \log \left(\frac{D_i^{\text{follow-up}}}{D_i^{\text{post operation}}} \right) \]

Baseline

1 year follow-up

100 observations

The 2015 Canadian Cardiovascular Congress
Outline

1. Background
2. Motivations
3. Growth measure
4. Results
5. Conclusions
Results

Representative case

Growth rate (mm/y)

Outer diameter (mm)

Maximum growth

Maximum diameter

The 2015 Canadian Cardiovascular Congress
Results

Entire cohort of descending aortas

0.9 mm/y → 3.1 mm/y

↑ 3 times

p < 0.001

The 2015 Canadian Cardiovascular Congress
Results

Stable descending aortas

Is it stable?

The 2015 Canadian Cardiovascular Congress
Results

Growing descending aortas

1.8 mm/y -> 4 mm/y

Axial growth

2 times

p < 0.001

1.3 mm/y

The 2015 Canadian Cardiovascular Congress
Results

Stable descending aortas

- Axial growth

0.23 mm/y → 1.64 mm/y

7 times

p < 0.001

0.02 mm/y

The 2015 Canadian Cardiovascular Congress
Outline

1. Background
2. Motivations
3. Growth measure
4. Result
5. Conclusions
Conclusions

The aortic wall grows at random locations along its length.
Conventional measure cannot predict maximum growth.
Location of maximum diameter is different than the location of maximum growth.

Multidimensional measurement:
- Spots of fast diameter growth
- Shrinking of some sites of the descending aorta
- Longitudinal growth

Accuracy and reliability in aneurysm surveillance

The 2015 Canadian Cardiovascular Congress